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Abstract

Shear flow past a planar membrane or screen, idealized as an infinite plate perforated by parallel periodic slots, is

discussed with emphasis on the effect of the plate thickness on the slip velocity, defined as the displacement of the linear

velocity profile on the side of the plate where a shear flow is imposed, and on the drift velocity prevailing on the other

side of the membrane. Numerical results based on boundary-element methods for longitudinal and transverse flow

show that, while the plate thickness has only a moderate effect on the slip velocity, it has a profound effect on the drift

velocity. The structure of the flow near the membrane pores is illustrated in terms of the wall shear stress distribution,

the velocity distribution for longitudinal flow, and the streamline pattern for transverse flow. The latter reveals the

possible occurrence of counter-rotating eddies inducing a back flow.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, the effective macroscopic boundary conditions prevailing at the surface of a permeable membrane

have been discussed by several authors for normal and parallel shear flow. In theoretical models, the membrane is

idealized either as an infinite plate perforated by holes or slits, or as a two-dimensional matrix consisting of a doubly

periodic array of unconsolidated particles. This idealized viewpoint reduces the membrane to a screen, sieve, planar

solid matrix, or a thin slab of a porous medium immersed in a viscous liquid. Flow normal to the membrane is driven by

a pressure difference whose relation to the flow rate has been the subject of several studies, as reviewed by Wang (2002).

At low Reynolds numbers, the relation is linear, yielding Starling’s law of biomechanics. Parallel shear flow on one side

of the membrane induces a drift velocity parallel to the membrane on the other side. Analysis shows that, when the

thickness of the membrane is zero, the drift velocity is equal to the slip velocity, defined as the displacement of the linear

velocity profile far above the membrane (Pozrikidis, 2001a). More generally, the drift velocity differs from the slip

velocity by an amount that is roughly proportional to the membrane thickness. In the extreme case of flow over a thick

membrane resembling a semi-infinite porous medium, the effective fluid velocity decays exponentially with distance

normal to the surface of the porous medium, and the drift velocity is effectively zero [e.g., Larson and Higdon (1986,

1987); Tachie et al. (2004)]. An important goal in the study of shear flow over a membrane is to compute the apparent

slip and drift velocities in terms of the membrane solidity and detailed geometry.
e front matter r 2005 Elsevier Ltd. All rights reserved.
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Tio and Sadhal (1994) first acknowledged the occurrence of a slip velocity for shear flow over a porous membrane,

which is analogous to the slip velocity for flow over the surface of a porous medium, and performed detailed

calculations for a model membrane idealized as a zero-thickness plate perforated by parallel slits. More recently,

Pozrikidis (2001a) developed an asymptotic expression for the slip velocity for flow past a zero-thickness plate

perforated by circular holes. In the discussion, a distinction was made between the slip and drift velocities for a finite-

thickness membrane, and numerical results were presented for idealized membranes consisting of doubly periodic

arrays of particles and periodic arrays of cylinders. Wang (2001) discussed flow in a two-dimensional channel divided

into two compartments by a slotted plane, where the motion is driven by the parallel translation of the channel walls. In

all of these calculations, the flow is either unidirectional or governed by the linear equations of Stokes flow applicable at

low Reynolds numbers. To assess the effect of the Reynolds number, Pozrikidis (2004) computed numerical solutions of

the Navier–Stokes equation for two-dimensional transverse shear flow over a periodic array of cylinders using a finite-

difference method, and demonstrated that fluid inertia promotes the magnitude of the slip and drift velocities.

Our main goal of this work is to illustrate the effect of the membrane thickness on the slip and drift velocities based

on the flow configuration considered by Tio and Sadhal (1994), in the limit of Stokes flow. Specifically, the analytical

results derived by Tio and Sadhal (1994) for flow past a zero-thickness plate perforated by slots will be extended by

numerical methods to plates of finite thickness, and the effect of the membrane thickness will be investigated with

emphasis on flow kinematics. The numerical solutions of Pozrikidis (2004) suggest that, in the case of transverse flow,

inertial effects become significant when the Reynolds number defined with respect to the microscopic membrane

dimension is on the order of 100, which is high in the applications motivating this work.

In Sections 2 and 3, unidirectional flow parallel to the slots and two-dimensional flow transverse to the slots are

discussed, subject to a specified shear rate above the plate and vanishing shear rate below the plate. In Section 4,

effective boundary conditions applicable for a general shear flow with arbitrary shear rates on either side of the plate are

considered. The practical significance of the analysis is then demonstrated with reference to the flow in a divided

channel considered by Wang (2001).
2. Longitudinal flow

We begin by considering unidirectional shear flow along the z-axis above an infinite plate of finite thickness

perforated by a periodic array of parallel slits, as shown in Fig. 1. In this idealized configuration, the plate consists of an

infinite sequence of rectangles of width a and depth b separated by the distance L, where the upper surface of the

rectangles is located at y ¼ 0: Elementary fluid mechanics shows that the z velocity component, uz, satisfies Laplace’s

equation

r2uz �
q2uz

qx2
þ

q2uz

qy2
¼ 0; (1)
a

L

x

y

z

Longitudinal flow

Transverse flow

b

Fig. 1. Schematic illustration of longitudinal or transverse shear flow over a plate perforated by rectangular slits.
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subject to the periodicity condition in the x direction, and the far field conditions duz=dy ! g as y ! 1; and duz=dy !

0 as y ! �1; where g is a specified shear rate. The no-slip boundary condition requires that uz ¼ 0 over the solid

surface of the plate.

To develop an integral representation for the flow, we introduce the harmonic potential due to a periodic array of

two-dimensional point sinks deployed along the x axis and separated by the distance L, given by

Gðx; x0Þ ¼ �
1

4p
log½2 coshðkðy � y0ÞÞ � 2 cosðkðx � x0ÞÞ� �

1

2L
ðy � y0Þ; (2)

where k ¼ 2p=L is the wave number, and x0 is the position of any one point sink. By construction, this harmonic

potential is the periodic Green’s function of Laplace’s equation, satisfying

r2Gðx; x0Þ þ
X1

n¼�1

d2ðx � xnÞ ¼ 0; (3)

where d2 is the two-dimensional delta function in the xy plane, and xn ¼ ðx0 þ nL; y0Þ is the location of the nth point

sink. Far above the array, as ðy � y0Þ ! 1; the periodic Green’s function produces a linear field, Gðx; x0Þ !

�ðy � y0Þ=L þ edt; where ‘‘edt’’ denotes exponentially decaying terms. Far below the array, as ðy � y0Þ ! �1; the
periodic Green’s function decays at an exponential rate, Gðx; x0Þ ! 0: A subroutine that evaluates this Green’s function

is included in the public software libraries FDLIB (Pozrikidis, 2001b) and BEMLIB (Pozrikidis, 2002).

The requisite integral representation arises by applying Green’s third identity for the longitudinal velocity field using

the periodic Green’s function and choosing as control area one period of the flow in the xy plane. The result is

uzðx0Þ ¼ �
1

m

I
C

Gðx;x0Þf zðxÞ dlðxÞ þ gy0 þ US ; (4)

where C is the contour of one rectangle in the xy plane, fz is the shear stress exerted on the surface of the rectangles

acting in the z direction, and US is the slip velocity (Pozrikidis, 2001a). As y0 ! 1; the first term on the right-hand side

decays at an exponential rate, yielding a linear flow with an apparent slip velocity. On the other hand, as y0 ! �1; we
obtain the drift velocity

uzðx0Þ ! UD �
1

m

I
C

y � y0
L

f zðxÞ dlðxÞ þ gy0 þ US

¼
1

mL

I
C

yf zðxÞ dlðxÞ þ y0 g�
1

mL

I
C

f zðxÞ dlðxÞ

2
4

3
5þ US : ð5Þ

A force balance over the control volume requires

I
C

f zðxÞ dlðxÞ ¼ gmL (6)

Thus, the term enclosed by the square brackets on the right-hand side of (5) is zero, and the slip and drift velocities are

related by

UD ¼
1

mL

I
C

yf zðxÞ dlðxÞ þ US : (7)

In the case of flow over a flat plate of zero thickness located at yp considered by Tio and Sadhal (1994), corresponding

to b ¼ 0; we use the aforementioned force balance to obtain

UD ¼ gyp þ US ; (8)

which shows that, if the origin of the y-axis is pinned at the plate, as it is under the present convention, the slip and drift

velocities are equal. Tio and Sadhal (1994) were able to derive the exact result

US ¼ �
gL
2p

log cos
p
2

1�
a

L

� �� �h i
: (9)
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As a=L ! 1; the slits disappear and the slip velocity tends to zero; on the other hand, as a=L ! 0; the slip velocity

diverges at a logarithmic rate.

Applying the integral representation (4) at the surface of the plates, and requiring the no-slip boundary condition, uz ¼ 0;
we obtain an integral equation of the first kind for the shear stress,I

C

Gðx; x0Þf zðxÞ dlðxÞ � mUS ¼ mgy0; (10)

where the point x0 lies on C. Appending to this equation the integral constraint (6), we obtain a self-contained system of

governing equations. This system was solved by a standard boundary-element method, featuring graded element

discretization with high concentration near the corners [e.g., Pozrikidis (2002)]. By way of illustrating the numerical accuracy,

we note that, for a test case in which the plate consists of periodic repetition of rectangles of width a=L ¼ 0:5 and depth

b=L ¼ 0:5; the numerical method yields the reduced slip velocity US=ðgLÞ ¼ 0:04252; 0.04200, 0.04179, 0.04171, and
0.04168, respectively, for 32, 64, 128, 256, and 512 boundary elements around the four sides of the rectangular contour. This

test suggests that accuracy up to the fourth decimal place can be obtained with a modest number of elements. The boundary-

element code is included in the public software libraries FDLIB (Pozrikidis, 2001b) and BEMLIB (Pozrikidis, 2002).

Fig. 2 shows graphs of the slip and drift velocities, both reduced by the Tio and Sadhal (1994) value for a zero-

thickness plate given in (9), plotted against the reduced plate thickness, b/L, for plate solidity a=L ¼ 0:5 and 0.2. In

both cases, the reduced slip velocity shown with the solid line decreases from the value of unity at b=L ¼ 0; to an

asymptotic value that is approximately equal to 0.75 for a=L ¼ 0:5; or 0.6 when b=L ¼ 0:20: The asymptotic value at

infinity corresponds to infinite shear flow over a surface containing a periodic sequence of rectangular, semi-infinite fins.

Correspondingly, the reduced drift velocity shown with the broken line decays from the value of unity at b=L ¼ 0; to the

asymptotic value of zero as b=L ! 1: Thus, while the plate thickness has only a moderate effect on the slip velocity, it

does have a profound effect on the drift velocity.

Fig. 3(a,b) illustrates the spatial structure of the reduced longitudinal velocity, v � uz=ðgLÞ; for a=L ¼ 0:5 and 0.2,

and a fixed plate thickness, b=L ¼ 0:25: Fig. 3(c,d) illustrates the corresponding distribution of the wall shear stress, fz,

plotted with respect to arc length, s, measured around the perimeter of a rectangle in the counterclockwise direction,

starting from the southeastern corner. The shear stress exhibits an integrable singularity at the four corners, as predicted

by a local analysis of Laplace’s equation. The singularity is captured with adequate accuracy in the boundary-element

solution thanks to the increased local element concentration. Comparison between the two distributions shown in Fig.

3(c,d) shows that, as the solidity a/L is reduced, the flow is able to penetrate more effectively the lower surface of the

plate, and the magnitude of the shear stress over the bottom side tends to become comparable to that on the upper side.

Evidence for this behavior is also found by a careful inspection of the velocity field shown in Fig. 3(a, b). Near the

middle of the upper surface of the plate, the shear stress is comparable to that of the unperturbed flow for a=L ¼ 0:5;
and nearly twice as high for a=L ¼ 0:2:
3. Transverse flow

Next, we turn our attention to the complementary case of two-dimensional transverse shear flow along the x-axis

above the perforated plate, as shown in Fig. 1. At sufficiently small Reynolds numbers, Re ¼ rgL2=m, where r is the

fluid density, the fluid motion is governed by the continuity equation, r � u ¼ 0; and the Stokes equation,

�rp þ mr2u ¼ 0; (11)

where u ¼ ðux; uyÞ is the velocity, p the pressure, and m the fluid viscosity. The velocity and pressure are periodic in the x

direction, and the y velocity component decays to zero far from the plate. The far-field condition requires dux=dy ! g
as y ! 1; and dux=dy ! 0 as y ! �1; where g is a specified shear rate. The no-slip boundary condition requires that

both velocity components are zero over the solid surface of the plate.

To develop an integral representation for the flow, we introduce the velocity field due to a periodic array of two-

dimensional point forces of strength b, deployed along the x-axis and separated by the distance L, given by uiðxÞ ¼

Gijðx; x0Þbj=ð8pmÞ; for j ¼ x; y, where the tensor Gijðx; x0Þ is the velocity Green’s function of periodic Stokes flow.

Together with the corresponding pressure Green’s function, pi, the velocity Green’s function satisfies the singularly-

forced Stokes equation

�
qpi

qxj

þ mr2Gji þ 8pdij

X1
n¼�1

d2ðx � xnÞ ¼ 0; (12)
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Fig. 3. Velocity field for longitudinal flow over a plate with (a) a=L ¼ 0:5; b=L ¼ 0:25; and (b) a=L ¼ 0:2; b=L ¼ 0:25: Frames (c, d)

show the corresponding distribution of the wall shear stress plotted with respect to arc length around the rectangles; the solid, dotted,

dashed, and dot-dashed lines correspond, respectively, to the right, top, left, and bottom side.

0 0.1 0.2 0.3 0.4 0.5
b/L

0

0.2

0.4

0.6

0.8

1

Slip
Drift

0 0.1 0.2 0.3 0.4 0.5
b/L

0

0.2

0.4

0.6

0.8

1

Slip
Drift

(a) (b)

Fig. 2. Effect of plate thickness on the slip and drift velocities, both normalized with respect to Tio and Sadhal (1994) value, for

longitudinal flow over a plate with (a) a=L ¼ 0:5; and (b) 0.2.
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where d2 is the two-dimensional delta function in the xy plane, xn ¼ ðx0 þ nL; y0Þ is the location of the nth point force,

x0 is the position of any one point force, and dij is Kronecker’s delta. The Stokes-flow Green’s function can be

computed in terms of the corresponding Green’s function of Laplace’s equation, G, given in Eq. (2), as Gij ¼ 2pQij ;
where

Qxx ¼ G þ ðy � y0Þ
qG

qy
; Qxy ¼ Qyx ¼ �ðy � y0Þ

qG

qx
;

Qyy ¼ G � ðy � y0Þ
qG

qy
: ð13Þ

Far above the array of point forces, as ðy � y0Þ ! 1; the periodic Green’s function produces a linear field,

Gxxðx; x0Þ ! �2pðy � y0Þ=L þ edt; while all other components decay at an exponential rate. Far below the array, as

ðy � y0Þ ! �1; all Green’s function components decay at an exponential rate. A subroutine that evaluates this Green’s

function is included in the public software libraries FDLIB (Pozrikidis, 2001b) and BEMLIB (Pozrikidis, 2002).

An integral representation for the flow can be derived by applying the reciprocal theorem for Stokes flow for the

shear flow of interest and the flow due to periodic array of point forces, choosing as a control area one period of the

flow. Using a well-established formalism, we obtain

ujðx0Þ ¼ �
1

4pm

I
C

Gijðx; x0Þf iðxÞ dlðxÞ þ djxðgy0 þ USÞ; (14)

where C is the contour of one rectangle in the xy plane, f is the boundary traction, and US is the slip velocity (Pozrikidis,

2001a). As y0 ! 1; the first term on the right-hand side decays at an exponential rate, yielding a linear flow along the

x-axis with an apparent slip velocity. On the other hand, as y0 ! �1 , we obtain the corresponding drift velocity

UD ¼
1

mL

I
C

yf xðxÞ dlðxÞ þ US : (15)

In the case of flat plates of zero thickness located at y ¼ yp considered by Tio and Sadhal (1994), b ¼ 0; we use the

force balanceI
C

f xðxÞ dlðxÞ ¼ gmL; (16)

to obtain Eq. (8), which shows that, if the origin of the y-axis is placed on the plate, the slip and drift velocities are

equal. Tio and Sadhal (1994) derived the exact result

US ¼ �
gL
4p

log cos
p
2

1�
a

L

� �� �h i
; (17)

which differs from the corresponding expression for longitudinal flow, given in Eq. (9), only by a factor of 2. Thus, for a

zero-thickness plate, the slip velocity for longitudinal flow is twice that for transverse flow for a given shear rate, g:
Based on this observation, Tio and Sadhal (1994) noted that a shear flow in a certain direction above the plate induces a

drift flow in a generally different direction below the plate.

Applying the integral representation (14) at the solid surface of the plate, and requiring the no-slip boundary

condition, uz ¼ 0; we obtain an integral equation of the first kind for the boundary tractionI
C

Gijðx; x0Þf iðxÞ dlðxÞ � 4pmUSdjx ¼ 4pmgy0djx; (18)

where the point x0 lies on C. Appending to this equation the integral constraint (16), we obtain a self-contained system

of governing equations. The system was solved by a standard boundary-element method, similar to that discussed in

Section 2 for longitudinal flow. By way of demonstrating the accuracy of the numerical method, we note that, for a test

case in which the plate consists of periodic repetition of rectangles of width a=L ¼ 0:5 and depth b=L ¼ 0:5; we obtain
the reduced slip velocity US=ðgLÞ ¼ 0:01833; 0.01810 and 0.01800, respectively, for 64, 128, and 256 boundary elements

around the rectangular contour. Thus, accuracy up to the fourth decimal place can be obtained with a modest number

of elements. The boundary-element code is included in the public software libraries FDLIB (Pozrikidis, 2001b) and

BEMLIB (Pozrikidis, 2002).

Fig. 4 shows graphs of the slip and drift velocities, both reduced by the Tio and Sadhal (1994) value for a zero-

thickness plate given in (17), plotted against the reduced plate thickness, b/L, for plate solidity a=L ¼ 0:5 and 0.2. In
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Fig. 4. Effect of plate thickness on the slip and drift velocities, both normalized with respect to Tio and Sadhal (1994) value, for

transverse flow over a plate with (a) a=L ¼ 0:5; and (b) 0.2.
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both cases, the reduced slip velocity shown with the solid line decreases from the value of unity at b=L ¼ 0; to an

asymptotic value that is approximately equal to 0.65 for a=L ¼ 0:5; and 0.52 when b=a ¼ 0:20: The asymptotic value at

infinity corresponds to infinite shear flow across a modulated surface containing a periodic sequence of semi-infinite

rectangular depressions. For a=L ¼ 0:5; as the plate thickness b/L increases from the value of zero, the reduced drift

velocity shown with the broken line decreases from the value of unity, it becomes negative when b=L 
 0:17; it reaches a
minimum, and then it becomes positive again when b=L 
 0:90: For a=L ¼ 0:2; the drift velocity first changes sign when

b=L 
 0:275: Thus, as in the case of longitudinal flow, whereas the plate thickness has only a moderate effect on the slip

velocity, it has a profound effect on the drift velocity. In it worth noting that, in the case of transverse flow over a

periodic array of circular cylinders, the slip velocity becomes negative when the cylinder radius is larger than

approximately 0.15L, but this only occurs when the origin of the y axis is set at the cylinder center instead of the

uppermost surface (Pozrikidis, 2001a).

The physical reason for the occurrence of a negative drift velocity is the onset of viscous eddies in the gaps between

successive rectangles, as illustrated in Fig. 5 for a=L ¼ 0:5; and in Fig. 6 for a=L ¼ 0:2: The drift velocity is positive for

the flows illustrated in Fig. 5(a–c), negative for the flows illustrated in Fig. 5(d,e), and positive again for the flow

illustrated in Fig. 5(f). The second change is sign is due to the development of two regions of recirculating fluid, yielding

a pair counter-rotating eddies inside the gap. Fig. 4(a) shows that the magnitude of the drift velocity corresponding to

Fig. 5(d–f) is small compared to that of the slip velocity, that is, the flow underneath the array is extremely weak. The

drift velocity is positive for the flows illustrated in Fig. 6(a,b), and negative for the flow illustrated in Fig. 6(c,d).

Fig. 7 shows the distribution of the wall shear stress, sS, for the flows depicted in Fig. 5(e) and 6(c). An integrable

singularity is evident in both distributions at the top corners, consistent with a local similarity solution for Stokes flow

(e.g., Pozrikidis, 1997). A change in the sign of the shear stress marks a wall stagnation point where a dividing

streamline separates regions of counter-flowing fluid. Comparison between the two distributions shows that, as the

solidity a/L is reduced, the flow is able to penetrate more effectively the lower side of the plate. Near the middle of the

upper surface of the plate, the shear stress is somewhat higher than that of the unperturbed flow for a=L ¼ 0:5; and
nearly twice as high for a=L ¼ 0:2:
4. Discussion

The modular flow configurations considered in Sections 2 and 3 can be readily generalized to shear flow with

arbitrary shear rates above and below the plate. To illustrate this extension, we consider unidirectional shear flow along

the z-axis parallel to the slots shown in Fig. 1, and assume that, far above and below the array, the velocity profile

exhibits the asymptotic distribution

uþ1
z ¼ gþy þ Lðgþcþþ � g�c�þÞ þ edt;

u�1
z ¼ g�y þ Lðgþcþ� � g�c��Þ þ edt; ð19Þ
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. Streamline pattern of transverse shear flow over a plate of thickness a=L ¼ 0:5 and depth (a) b=L ¼ 0:004; (b) 0.05, (c) 0.1,
(d) 0.2, (e) 0.5, and (f) 0.9.
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Fig. 6. Streamline pattern of transverse shear flow over a plate of thickness a=L ¼ 0:2 and depth (a) b=L ¼ 0:001; (b) 0.2, (c) 0.5, and
(d) 0.9.
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where g� are prescribed constant shear rates, and c77 are dimensionless coefficients. In Section 2, we considered the

case gþ ¼ g and g� ¼ 0; and computed the slip velocity coefficient c++ and drift velocity coefficient c+�. Pretending

that the linear velocity profiles expressed by all but the omitted terms on the right-hand sides of (19) can be extended all

the way up to the origin of the y-axis, we set y ¼ 0 and compute the apparent slip-velocities

uþs
z ¼ Lðgþcþþ � g�c�þÞ; u�s

z ¼ Lðgþcþ� � g�c��Þ; (20)

and the apparent discontinuity in the far-field velocity across the array,

Duz � uþs
z � u�s

z ¼ L½gþðcþþ � cþ�Þ þ g�ðc�� � c�þÞ�: (21)

For a plate with top-to-bottom symmetry, we put the origin of the y-axis midway between the upper and lower surface,

and set cþþ ¼ c�� � cS and cþ� ¼ c�þ � cD; to obtain

uþs
z ¼ LðgþcS � g�cDÞ; u�s

z ¼ LðgþcD � g�cSÞ (22)
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and

Duz � uþs
z � u�s

z ¼ Lðgþ þ g�ÞðcS � cDÞ; (23)

where cS and cD are slip and drift velocity coefficients. For a zero-thickness plate considered by Tio and Sadhal (1994),

cS ¼ cD ¼ �
1

2p
log cos

p
2

1�
a

L

� �� �h i
: (24)

Similar equations can be written for the case of two-dimensional shear flow parallel to the x-axis.

To put these results into practical use, we consider a macroscopically unidirectional plane Couette flow in a two-

dimensional channel confined between two plane walls located at y ¼ �h: The channel is divided into two

compartments separated by a stationary permeable interface of small thickness, located at y ¼ y0: Elementary

derivations show that the macroscopic streamwise velocity profile in the lower and upper compartments have,

respectively, the linear forms

u� ¼ U1 þ g�ðy þ hÞ; uþ ¼ U2 þ gþðy � hÞ; (25)

where U1 and U2 are the velocities of the lower and upper wall, h1 ¼ h þ y0 and h2 ¼ h � y0 are the lower and upper

compartment heights, and u7s are macroscopic slip velocities that depend on the lower and upper shear rates,

g� �
u�s � U1

h1
; gþ �

U2 � uþs

h2
: (26)

Substituting (26) in the generic form of (22) for longitudinal or transverse flow, we find

uþs ¼ L
U2 � uþs

h2
cS �

u�s � U1

h1
cD

� �
;

u�s ¼ L
U2 � uþs

h2
cD �

u�s � U1

h1
cS

� �
; ð27Þ

which can be rearranged into the linear system for u+s and u�s,

1þ
L

h2
cS

� �
uþs þ

L

h1
cDu�s ¼

L

h2
cSU2 þ

L

h1
cDU1;

L

h2
cDuþs þ 1þ

L

h1
cS

� �
u�s ¼

L

h2
cDU2 þ

L

h1
cSU1: ð28Þ

Solving this linear system allows us to evaluate the upper and lower slip velocities, u7s, and thereby generate the

velocity profile and compute the shear stress exerted on the channel walls.
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One of the coefficients on the left-hand side of the linear system (28) has the general form LcS/h1, and other

coefficients are defined by similar expressions. Substituting the Tio and Sadhal (1994) value given in Eq. (24), we find

L

h1
cS ¼ �

a
2p

L

h1
log cos

p
2

1�
a

L

� �� �h i
; (29)

where a ¼ 1 for longitudinal flow, and 1/2 for transverse flow. In a typical application, the distance between the

membrane pores, L, is smaller than the macroscopic length scale h1. For a low-solidity membrane, a=L ! 0; a Taylor

series expansion yields LcS=h1 
 �ðL=h1Þ logða=LÞ; which takes values on the order of unity when h1=Lo� log ða=LÞ:
This observation suggests that the hydrodynamic effect of membrane porosity will be important only in small-scale

flows, such as those occurring in microscopic channels.
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